Intrastriatal gene delivery of GDNF persistently attenuates methamphetamine self-administration and relapse in mice.

نویسندگان

  • Yijin Yan
  • Yoshiaki Miyamoto
  • Atsumi Nitta
  • Shin-Ichi Muramatsu
  • Keiya Ozawa
  • Kiyofumi Yamada
  • Toshitaka Nabeshima
چکیده

Relapse of drug abuse after abstinence is a major challenge to the treatment of addicts. In our well-established mouse models of methamphetamine (Meth) self-administration and reinstatement, bilateral microinjection of adeno-associated virus vectors expressing GDNF (AAV-Gdnf) into the striatum significantly reduced Meth self-administration, without affecting locomotor activity. Moreover, the intrastriatal AAV-Gdnf attenuated cue-induced reinstatement of Meth-seeking behaviour in a sustainable manner. In addition, this manipulation showed that Meth-primed reinstatement of Meth-seeking behaviour was reduced. These findings suggest that the AAV vector-mediated Gdnf gene transfer into the striatum is an effective and sustainable approach to attenuate Meth self-administration and Meth-associated cue-induced relapsing behaviour and that the AAV-mediated Gdnf gene transfer in the brain may be a valuable gene therapy against drug dependence and protracted relapse in clinical settings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enduring vulnerability to reinstatement of methamphetamine-seeking behavior in glial-cell-line-derived neurotrophic factor mutant mice.

Genetic factors are considered to play an important role in drug dependence/addiction including the development of drug dependence and relapse. With the use of a model of drug self-administration in mutant mice, several specific genes and proteins have been identified as potentially important in the development of drug dependence. In contrast, little is known about the role of specific genes in...

متن کامل

Long-term consequences of methamphetamine exposure in young adults are exacerbated in glial cell line-derived neurotrophic factor heterozygous mice.

Methamphetamine abuse in young adults has long-term deleterious effects on brain function that are associated with damage to monoaminergic neurons. Administration of glial cell line-derived neurotrophic factor (GDNF) protects dopamine neurons from the toxic effects of methamphetamine in animal models. Therefore, we hypothesized that a partial GDNF gene deletion would increase the susceptibility...

متن کامل

Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice.

Inflammation, phospho-p38 MAPK activation, and a reduction in glial cell line-derived neurotrophic factor (GDNF) occur in Parkinson's disease. Microglial activation in the substantia nigra and a tyrosine hydroxylase deficit in the striatum of 3-month-old GDNF heterozygous (GDNF(+/-)) mice were previously reported and both were exacerbated by a toxic methamphetamine binge. The current study asse...

متن کامل

he effects of vitamin B12 on the brain damages caused by methamphetamine in mice

Objective(s): Methamphetamine (METH) is a powerful stimulant drug that directly affects the brain and induces neurological deficits. B12 is a water-soluble vitamin (vit) that is reported to attenuate neuronal degeneration. The goal of the present study is to investigate the effect of vitamin B12 on METH’s neurodegenerative changes.Materials and Methods: Two groups of 6 animals received METH (10...

متن کامل

Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation.

Glial cell line-derived neurotrophic factor (GDNF) exerts a notable protective effect on dopaminergic neurons in rodent and primate models of Parkinson's disease (PD). The clinical applicability of this therapy is, however, hampered by the need of a durable and stable GDNF source allowing the safe and continuous delivery of the trophic factor into the brain parenchyma. Intrastriatal carotid bod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of neuropsychopharmacology

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2013